

# Study and Analysis of Network based Intrusion **Detection System**

Lata<sup>1</sup>, Indu Kashyap<sup>2</sup>

M.tech student ,MRIU,fbd,india<sup>1</sup>

Assistant professor CSE dept. MRIU, fbd, India2

Abstract:-Intrusion detection system is device or software applications that monitor network or system activities for malicious activities or policy violation. Two types of Intrusion detection systems are network based and host based. This paper is only discussed about network based intrusion system. Three methodologies are used for detect intrusion on the Network, signature based, anomaly based and stateful protocol analysis. This paper is based on the signature based intrusion detection system methodology. Intrusion can be possible on the header part or payload part .Different pattern matching algorithms are used for detection intrusion. Brute force and Knuth-Morris-Pratt are two single keyword pattern matching algorithms and detect the payload part intrusion. String matching consists in finding one or more occurrences of a pattern in a text (input). Snort and Sax2 are network based intrusion detection system. These systems monitor the network and capture packets in promiscuous mode, analyze these packets and give report.

Keywords: Intrusion detection system (IDS), network behavior analysis system (NBAS), network based intrusion detection system, TCP, UDP. Intruders, attacks, signature, stateful, anomaly.

#### **INTRODUCTION** I.

Network based intrusion detection system monitor network matching to known attacks. activities. A network consists of two or more computers that are linked in order to share resources, exchange files, or allow electronic communications. Intrusion detection is the process of monitoring the events occurring in a computer system or network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of computer security policies, acceptable use Intrusion detection systems (IDPS) are policies[9]. primarily focused on identifying possible incidents, logging information about them, and reporting them to security administrators. IDSs typically record information related to observed events, notify security administrators of important observed events, and produce reports.

#### INTRUSION DETECTION SYSTEM II.

Intrusion Detection Systems help information systems prepare for, and deal with attacks. They accomplish this by collecting information from a variety of systems and network sources, and then analyzing the information for possible security problems. Intrusion detection system

Monitoring and analysis of user and system activity.

Auditing of system configurations and vulnerabilities.

Assessing the integrity of critical system and data • files.

Statistical analysis of activity patterns based on the

Abnormal activity analysis, Operating system audit [1].

#### III. **METHODOLOGIES OF IDS**

Intrusion detection system uses many methodologies to detect incidents. Most IDPS technologies use multiple detection methodologies, either separately or integrated, to provide more broad and accurate detection.

#### Α. Signature based Detection

A signature is a pattern that corresponds to a known threat. Signature based detection is process of comparing signatures against observed events to identify possible incidents. Signature based detection is very effective at detecting known threats but largely ineffective at detecting previously unknown threats.

Example: An email with the subject of free pictures and attachment filename of freepics.exe, these characteristics are known form of malware. If attackers modify the file name freepics.exe to freepics1.exe, signature based detection will not able to detect this malware.

Limitations: It cannot detect previously unknown threats. [2]

#### *B*. Anomaly based Detection

Anomaly based detection is a process of comparing definitions of what activities is considered normal against observed events to identify significant deviations. An IDPS

www.ijarcce.com



using anomaly based detection has profiles that represent the each focus on a single host, many host-based IDS systems normal behavior of such things as users, hosts network use an agent-console model where agents run on (and connections or applications. The profile is developed by monitor) individual hosts but report to a single centralized monitoring and characteristics of typical activities, number console (so that a single console can configure, manage, and of email send by user, number of failed login attempts for a consolidate data from numerous hosts). Host-based IDSs can host and the level of processor usage for a host over a detect attacks undetectable to the network-based IDS and period of time. Anomaly based detection is very effective at can gauge attack effects quite accurately[2]. detecting previously unknown threats. Limitations: D. Building profile is very challenging [2].

#### С. Stateful Protocol Analysis

Stateful protocol analysis is a process of comparing predetermined profiles of generally accepted definitions of benign protocol activities for each protocol state against observed events to identify deviations. Stateful protocol analysis relies on vender developed universal profiles that specify how particular protocol should and should not be used. The stateful in stateful protocol analysis means that the IDPS is capable of understanding and tracking the state of network, transport and application protocols that have a notion of state. Limitations: It is limited to examining a single request or response. Many attacks cannot be detected by looking at one request - the attack may involve a series of requests [2].

#### **TECHNIOUES of INTRUSION DETECTION** IV. SYSTEM

IDS use several techniques, which involve the IDS stopping the attack itself, changing the security environment (e.g., reconfiguring a firewall), or changing the attack's content. The types of IDS technologies are differentiated primarily by the types of events that they monitor and the ways in which they are deployed.

Α. Network Behavior Analysis (NBA), which examines network traffic to identify threats that generate unusual traffic flows, such as distributed denial of service (DDoS) attacks, certain forms of malware, and policy violations (e.g., a client system providing network services to other systems). Behavior-based analysis learns the normal behavior of traffic and systems and then continually examines them for potentially harmful anomalies and for behavior that frequently accompanies incidents. This approach recognizes attacks based on what they do, rather than whether their code matches strings used in a specific past incident. "It stops traffic that is not malicious on its face but that will do malicious things," said Allan Paller [8].

#### В. Wireless

This technique monitors wireless network traffic and analyzes it to identify suspicious activity involving the wireless networking protocols themselves [3].

#### Host-based С.

It can analyze activities on the host it monitors at a high level of detail, it can often determine which processes and/or users are involved in malicious activities. Though they may

Copyright to IJARCCE

## Network-based

It examines or monitors an entire, large network with only a few well-situated nodes or devices and imposes little overhead on network devices and analyzes the network and application protocol activity to identify suspicious activity. Network-based IDSs are mostly passive devices that monitor ongoing network activity without adding significant overhead or interfering with network operation. They are easy to secure against attack and may even be undetectable to attackers; they also require little effort to install and use on existing networks [2].

Sensors can be deployed in one of two modes inline mode Inline mode: - An inline and passive mode sensor is deployed so that the network traffic it is monitoring must pass through it, much like the traffic flow associated with a firewall. In fact, some inline sensors are hybrid firewall/IDS devices, while others are simply IDSs. The primary motivation for deploying IDS sensors inline is to enable them to stop attacks by blocking network traffic[2]. Passive mode : A passive sensor is deployed so that it monitors a copy of the actual network traffic; no traffic actually passes through the sensor. Passive sensors are typically deployed so that they can monitor key network locations, such as the divisions between networks, and key network segments, such as activity on a demilitarized zone (DMZ) subnet [2]. Most techniques for having a sensor prevent intrusions require that the sensor be deployed in inline mode, not passive. Because passive techniques monitor a copy of the traffic, they typically provide no reliable way for a sensor to stop the traffic from reaching its destination. In some cases, a passive sensor can place packets onto a network to attempt to disrupt a connection, but such methods are generally less effective than inline methods. Generally, organizations should deploy sensors inline if prevention methods will be used and passive if they will not.

#### V. NETWORK BASED SYSTEM ARCHITECTURE

Passive sensors can monitor traffic through various methods-Spanning Port. Many switches have a spanning port, 1) which is a port that can see all network traffic going through the switch. Connecting a sensor to a spanning port can allow it to monitor traffic going to and from many hosts[2].

Network Tap. A network tap is a direct connection 2) between a sensor and the physical network media itself, such

# IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 5, May 2013

as a fiber optic cable. The tap provides the sensor with a copy of all network traffic being carried by the media[2].

3) IDS Load Balancer. A load balancer can receive copies of network traffic from one or more spanning ports or network taps and aggregate traffic from different networks (e.g., reassemble a session that was split between two networks). The load balancer then distributes copies of the traffic to one or more listening devices, including IDS sensors, based on a set of rules configured by an administrator. The rules tell the load balancer which types of traffic to provide to each listening device[2].

## Components of IDS

The typical components in an IDS solution are as follows:

4) Sensor or Agent. Sensors and agents monitor and analyze activity. The term sensor is typically used for IDSs that monitor networks, including network-based, wireless, and network behavior analysis technologies.

5) Management Server. A management server is a centralized device that receives information from the sensors or agents and manages them. Some management servers perform analysis on the event information that the sensors or agents provide and can identify events that the individual sensors or agents cannot. Matching event information from multiple sensors or agents, such as finding events triggered by the same IP address, is known as correlation. Management servers are available as both appliance and software-only products.

6) Database Server. A database server is a repository for event information recorded by sensors, agents, and/or management servers. Many IDPSs provide support for database servers.

7) Console. A console is a program that provides an interface for the IDPS's users and administrators. Console software is typically installed onto standard desktop or laptop computers. Some consoles are used for IDPS administration only, such as configuring sensors or agents and applying software updates, while other consoles are used strictly for monitor [3].

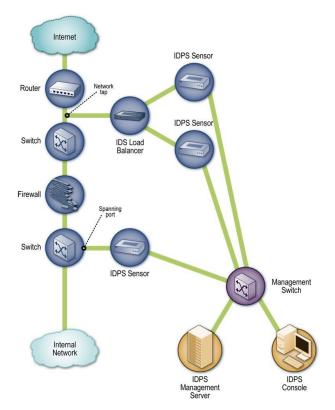



Fig1: Passive Intrusion Detection System

## VI. ARCHITECTURE of SIGNATURE BASED NETWORK INTRUSION DETECTION SYSTEM

SNORT is a signature based NIDS. SNORT can be divided into five major components that are each critical to intrusion detection. The first is the packet capturing mechanism. SNORT relies on an external packet capturing library (libpcap) to sniff packets. After packets have been captured in a raw form, they are passed into the packet decoder. The decoder is the first step into SNORT's own architecture. The packet decoder translates specific protocol elements into an internal data structure[12]. After the initial preparatory packet capture and decode is completed, traffic is handled by the preprocessors. Any numbers of pluggable preprocessors either examines or manipulate packets before handing them to the next component: the detection engine. The detection engine performs simple tests on a single aspect of each packet to detect intrusions. The last component is the output plugins, which generate alerts to present suspicious activity to you [10].



International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 5, May 2013

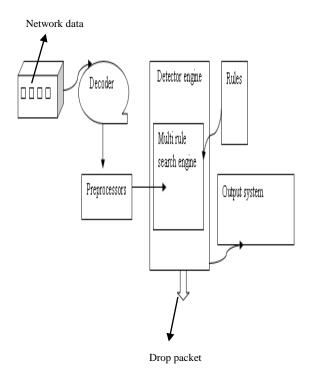



Fig2: SNORT Architecture

## VII. SINGLE KEYWORD PATTERN MATCHING ALGORITHM

Single keyword pattern matching algorithms are detecting the payload intrusion. String matching is finding a substring (called a pattern) within another string (called a text). Pattern and text are both strings built over a fixed and finite non empty alphabet. And give the output of all occurrences of the pattern in the text.

Keyword/ pattern is denoted as x=x[0---m-1]

m = length of the pattern.

Text/input is denoted as y=y[0------n-1] n=length of the input[10].

## A. BRUTE FORCE ALGORITHM

Brute force algorithm is a very trivial string matching algorithm. It consists in checking at each position from 0 to m-n of the text by employing a pattern of size m .This is done by comparing every character in the pattern with the corresponding character in the text. If all the characters match, then it is said to be a match or data is intruded[11]. Algorithm 1 Brute Force Single-Keyword Matching Algorithm

1:procedure Brute\_Force(x,m,y, n) //Input:

Copyright to IJARCCE

- //x=array of m bytes representing the keyword
  //m =integer representing the keyword length
  // y= array of n bytes representing the text input
  // n= integer representing the text length
- 2: for j = 0 to n m do //every character in y
- 3: i = 0
- 4: while i < m and x[i] = y[i + j] do
- 5: i = i + 1 // i = count of matching
- 6: end while
- 7: if  $i \ge m$  then
- 8: output j
- 9: end if
- 10: end for
  - 11:end procedure

**Main points**-Here we outline the main features of the above algorithm.

• No preprocessing phase.

• Constant space required. No extra memory required other than the memory storage for pattern and text.

• Always shifts the window by one position to the right.

• Character comparisons can be done in any order.

• Searching phase is O(mn) time complexity. Expected character comparisons 2n[10].

Example:-

## 

- 5) ΑΑΑΑ<u>ΑΑΑΑΗ</u>ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

**AAAAH 5 comparisons made** Pattern is found that means input is intruded.

## B. KNUTH-MORRIS-PRATT ALGORITHM

Knuth have proposed a string matching algorithm that turns the search string into a finite state machine, and then runs the machine with the string to be searched as the input string. KMP is linear time algorithm for the string matching problem. A matching time of O(n) is achieved by avoiding comparisons with elements of 'S' that have previously been involved in comparison with some element of the pattern 'p' to be matched. i.e., backtracking on the string 'S' never occurs.

Components of KMP algorithm:

www.ijarcce.com



• The prefix function,  $\Pi$ 

about how the pattern matches against shifts of itself. This information can be used to avoid useless shifts of the pattern 'p'. In other words, this enables avoiding backtracking on the string 'S'[4].

• The KMP Matcher

With string 'S', pattern 'p' and prefix function ' $\Pi$ ' as inputs, finds the occurrence of 'p' in 'S' and returns the number of shifts of 'p' after which occurrence is found[4]. The prefix function,  $\Pi$ 

pseudocode computes the prefix function,  $\Pi$ :

## **Compute-Prefix-Function** (p)

 $m \leftarrow length[p] // p' pattern to be matched$  $\Pi[1] \leftarrow 0$ k ← 0 for  $q \leftarrow 2$  to m **do while** k > 0 and p[k+1] != p[q]**do** k ← Π[k] **If** p[k+1] = p[q]**then** k ← k +1  $\Pi[q] \leftarrow k$ **return** П [21]

The KMP Matcher:

The KMP Matcher, with pattern 'p', string 'S' and prefix function ' $\Pi$ ' as input, finds a match of p in S. pseudocode computes the matching component of KMP algorithm: KMP-Matcher(S,p)

 $1 n \leftarrow length[S]$ 

 $2 \text{ m} \leftarrow \text{length}[p]$ 

 $3 \Pi \leftarrow Compute-Prefix-Function(p)$ 

//number of characters matched 4 q ← 0

//scan S from left to right **5 for** i **←**1 to n

6 **do while** q > 0 and p[q+1] != S[i]

7 do q  $\leftarrow \Pi[q]$ //next character does not match

8 **if** p[q+1] = S[i]

9 then  $q \leftarrow q + 1$ //next character matches

10 if q = m//is all of p matched?

11 **then** print 'Pattern occurs with shift 1 i - m

← ∏[q] // look for the next match[5].

Main points- The main points of the Knuth-Morris-Pratt algorithm are outlined below

Performs the comparisons from left to right. •

Preprocessing phase in O(m) space and time complexity.

Searching phase in O(n+m) time complexity.

Delay bounded by  $\log(m)[11]$ .

## Example

Pattern AAAAH

## 

Copyright to IJARCCE

AAAAH 5 comparisons made

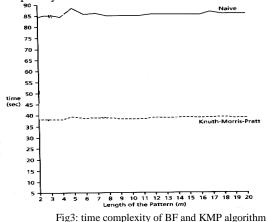
## AAAAH 1 comparison made

AAAAH 1 comparison made

4)AAA<u>AAAAA</u>AHAAAAAAAAAAAAAAAAAAAAAA AAAAH 1 comparison made

5)ААААААААААААААААААААААААААААА AAAAH 1 comparison made

## 6)AAAAAAAAAHAAAAAAAAAAAAAAAAAAAAA


AAAAH 1 comparison made Pattern is found after 10 comparisons which is less then

brute force algorithm.

#### С. COMPARISON BETWEEN BF AND KMP ALGORITHMS

KMP Performs the comparisons from left to right 1) and In BF Character comparisons can be done in any order.

KMP performs preprocessing phase in O(m) space 2) and time complexity. In BF Searching phase is O(mn) time complexity.



3) KMP searching phase are O(n+m) and BF comparisons 2n.

Preprocessing phase can be done in KMP. No 4) 12 g preprocessing phase can be done in BF.

BF, Constant space required. No extra memory 5) required other than the memory storage for pattern and text. KMP need extra space and time for preprocessing[13],[14].

If the pattern is small (1 to 3 characters long) it is better to use the naive algorithm otherwise alphabet size is large the Knuth-Morris-Pratt algorithm is a good choice.

#### VIII. SAX2 NETWORK BASED IDS

SAX2 is a network based IDS. Sax2 is a professional intrusion detection and prevention system that performs realtime packet capturing, 24/7 network monitoring, advanced protocol analyzing and automatic expert detection. By giving insights into all of your network's operations, Sax2 makes it easy to isolate and solve network problems, identify network bottleneck and bandwidth use, detect network www.ijarcce.com 2036

1)

vulnerabilities and discovered the network whether there is a • breach of security strategy and the signs of being attacked in • the network of hazard, and then intercept and stop before . their invasion. Network administrators can directly monitor http requests, email messages, ftp transfers, as well as realtime activities and message details for the two popular instant messengers[7]. Sax2 is designed to be used by both IT professionals and novice users. Problems are clearly identified, and solutions are suggested in understandable  $C_{\rm c}$ terms

#### Features of SAX 2 Α.

Network based SAX2: is a network-based IDS. It 2) 1) collects, filters, and analyzes traffic that passes through a SAX2 is only by Windows. specific network location where it placed. Sax2 does not use 3) or require installation of client software on each individual, networked computer.

2) Intrusion Detection and Prevention: Detects variety of complex attacks in the network, including pre-attack scan stealth port scans, packet logging and detecting detection, password guessing, denial of service attacks (DoS/DDoS) etc. Sax2 will in itiatively stop the dangerous behavior to prevent the whole network.

Traffic Analysis, With its real-time display and 7) 3) statistical traffic analysis of whole network, you may find network resource abuse, worms, denial of service attacks, to rule set. lead the network work well.

Logs of Events Records, the actions and sensitive 4) events in whole network, including the WEB browser, Email transmission, FTP transfers and instant message - MSN to 10) help network administrators identify potential threats.

5) Customize Security Policy, According to the user's own network, IT professional may customize the security policy to improve the accuracy of intrusion detection.

Real-Time Alert and Response : Multiple response 6) modes are available in Sax2 like send console message, logs, e-mail inform, real-time cut off the connection, flexible logs.

Name Table: The name table allows you to make or 7) edit alias for addresses, ports and protocols, you may also specify the text color for a selected item. This useful feature packet-related information familiar can make and intelligible.

Support Multi-adapters: If you have more than one 8) adapter installed on the local machine, Sax2 can capture the traffic on all the adapters.

9) In-depth packet Decoding: SAX2 provides detail packet decoding information. Conversation & Packet Stream Monitor all conversations and reconstruct packet stream [6]. В. SAX2 Architecture

It is comprised of following modules in its architecture:

- packet capturing
- matching rules
- protocol analysis
- comprehensive diagnosis
- incident response Copyright to IJARCCE

policy management

- logs
  - display for results

The operation of Sax2 is completely dependent on analysis of internet protocols. The technology is used by Sax2 is an efficient multi-pattern matching algorithm to analyze highspeed network[7].

COMPARISON BETWEEN NBIDS SNORT AND SAX2

SNORT is a open source and SAX2 is shareware.

SNORT is supporting by all the major OS but

SNORT analysis all the protocol. SAX2 also analysis IP, TCP, UDP, HTTP, FTP, POP3, SMTP etc.

Both are real time traffic analyzers. 4)

SNORT and SAX2 are URL encoding, UDP port 5) signature attack.

6) SNORT throughput capability without packet loss is 100mbps, SAX 2 throughput capability is high.

Rules set are flexible in SNORT, in SAX2 security rules are > 1500 and import policies, update and customize

SAX2 is GUI but SNORT is not GUI but good 8) interface.

9) Attack response is very good in both system

SNORT can detect the intrusion but not prevent. SAX2 is a intrusion detection and prevention system.

SAX 2 is throughput intrusion detection and prevention system [7].

## CONCLUSION

Network based Intrusion detection system can detect small attacks or stepping stone of big attack. Signature based IDS play important role in NBIDS but With Time New Malicious data with New Pattern may exist, Update of the signature pattern is very important and difficult otherwise it cannot able to detect new attacks. Different algorithms are used for ID but fast and take less space in matching is good algorithm. SNORT and SAX2 are mainly signature based IDS. AX2 is faster, GUI, and packet dropping is lass.

## REFERENCES

- 1. Sans institute infosec reading room, Understanding Intrusion Detection System, Internet, sans institude ,1 to 9, 2001.
- 2. Karen Scarfone, Peter Mell, Guide to Intrusion detection and prevention systems (IDPS), NIST, 1 to 127, 2007.
- 3. Tiwari Nitin, S. R. Singh and P. G. Singh, Intrusion Detection and Prevention System (IDPS) Technology- Network Behavior Analysis System (NBAS), International Science Congress Association , 51-56, July (2012).
- 4. B. Raju1 and B. SrinivasNetwork Intrusion Detection System Using KMP Pattern Matching Algorithm, IJCST, 33-36, January 2012 www.ijarcce.com



- C. U. Chauhan and V.A.Gulhane, Signature Based Rule Matching Technique in Network Intrusion Detection System, internet, 412-416, April 2012.
- Faisal Mahmood , INTRUSION DEECTION SYSTEM using Sax 2.0 and wireshark 1.2.2, Internet, 1-19, 10/6/2009
- 7. Bhavani sunke, Research and Analysis of Network Intrusion Detection systems, Internet, 1-88, 2008.
- 8. David Geer, Behavior-Based Network Security Goes Mainstream, IEEE,14-17, march 2006
- Different Types of Network Attacks And Security Threats and Counter Measures, internet, 1-5.
- James Kelly, An Examination of Pattern Matching Algorithms for Intrusion Detection Systems, Internet,1-208, August 2006
- 11. SIDDHARTH SAHA, Network Intrusion Detection System Using String Matching, Internet, 1-46, 2010.
- 12. Martin Roesch, S n o r t lightweight Intrusion Detection for networks, Internet, 1-11, 1999.
- 13. Ricardo A. Baeza-Yates, STRING SEARCHING ALGORITHMS, internet, 1-18, 1992.
- 14. Nimisha Singla, Deepak Garg, S tring Matching Algorithms and their Applicability in various Applications , internet, 218-222, January 2012.